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OBJECTIVES

• Define supervised and unsupervised learning

• Define natural language processing, deep learning, neural 

networks

• Define the process by which supervised learning models are 

created, trained, and deployed

• List key considerations for designing deep learning models, 

including cost, bias, risk, explainability, and interpretability

• List examples of how AI is being used in health care environments.

OVERVIEW

• Defining AI
• Supervised Machine Learning

• Natural Language Processing
• Neural Networks/Deep Learning

• Unsupervised Machine Learning
• Generative AI

• Customized AI Solutions
• Training Data Sets
• Annotation
• Curation

• Risk, Bias, Best Practices
• Interpretability/Explainability
• Adversarial Training

• Case Studies of AI in Health Care
• Hospital Optimization
• Reducing Burden
• Augmenting Clinical Workflows
• Risk Stratification
• Mental Health
• Invisibles
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DEFINING AI

DEFINING ARTIFICIAL INTELLIGENCE

Supervised 
Machine
Learning

Deep Learning/ 
Neural Networks

Unsupervised 
Machine 
Learning

Generative 
AI

Natural Language 
Processing
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WHICH TYPE OF AI IS BEST FOR HEALTH CARE?

Supervised 
Machine
Learning

Deep Learning/ 
Neural Networks

Unsupervised 
Machine 
Learning

Generative 
AI

Natural Language 
Processing

UNSUPERVISED MACHINE 
LEARNING 

• Machine learns from huge, raw datasets
• No preprocessing
• No annotation or curation
• No testing for bias or unintended outcomes

• Generative AI largely unsupervised
• ChatGPT 3 (Generative Pretrained 

Transformer 3)
•Trained on 570GB of data from text 

databased on Internet
• Hallucinations, incorrect information
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SUPERVISED MACHINE 
LEARNING

• Machines learn from curated, 
annotated datasets

• Humans do the curation and 
annotation

• Humans are involved in monitoring 
results and refining the models 

IS ALL SUPERVISED MACHINE LEARNING EQUAL?
HOW MANY HAVE HAD A GOOD SUPERVISOR?

HOW MANY HAVE HAD A BAD SUPERVISOR?
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HOW DO WE BUILD SML?

• We identify “features” we think will delineate between two categories
• Patients who are likely to develop cancer

• Radiologic imaging, pathology report, diagnoses, family history, genetic data, etc.

• Humans label (annotate) those features
• Cancer risk: grade of cancer, hormonal status of tumor, etc.

• Humans provide positive and negative cases (training data set)
• Patients who were fine (negative) and patients who had poor outcomes (positive)
• All features and labels (feature vectors) included with each case

• AI learns/is taught to classify cases based on patterns
• What is the best (most predictive) and most parsimonious pattern?
• Algorithm generates a ”Decision Boundary” drawn around data features/vectors

IDENTIFYING BEST PATTERNS: DECISION BOUNDARIES

• Cases (+ and -) are plotted based on data vectors (collections of “features” on “layers”
• Algorithm creates boundaries to delineate positive and negative
• Boundaries can be simple (linear) or complex, based on feature vectors and layers

Figure from Barzilay lecture, MIT Sloan Course “AI in Health Care”
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HOW DO WE BUILD SML?

• Area under the curve (AUC): how well the AI classifies negative and 

positive cases in the training data set

• Monitor and plot AUC as data are entered (learning curves)

• Provide NEW positive and negative case set (validation set)
• Don’t tell the AI which is which

LEARNING CURVES AND DATA

• Learning Curve
• Number of cases (x axis) plotted against the AUC 

(y axis)

• AUC grows fastest from case 1–100 (~85%)

• Slower from 100–500 (~92%)

• Slower from 500–1000 (~93%)

Accuracy of the Model
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“CRAFTING” A SUPERVISED DEEP LEARNING MODEL
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Data Vectors & Layers of Deep Learning 
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CRAFTING A BEER DEEP LEARNING MODEL: VALIDATION

IPA

Stout

Belgian

Sour

Lager

Barrel 
Aged

Bottle
Cond.

Lagered

Citra

Mosaic

Amarillo

Nelson

Magnum

Imperial

Double

Tripel

Quad

Hazy

Beers I’ve 
Never Had

V
al

id
a

tio
n 

D
a

ta
 S

et

Data Vectors & Layers of Deep Learning 

Beers Rick 
Would Like

Beers Rick 
Would NOT Like

15

16



5/21/2024

9

https://www.theguardian.com/technology/2024/mar/26/ai-beer-taste-better-belgium-scientists

RISKS, MYTHS, AND LIMITATIONS OF AI

• Democratization
• Cannot apply premade models with preconstructed algorithms to new situations. 
• Customization is key
• Distributional shift: different geography, systems, and practices, limit generalizability

• AI and bias
• AI does not introduce bias, it learns biases from biased data
• If there are biases in your training data, your AI will learn those biases
• Curation is critical
• Train AI model to focus on subsets of the data to find different patterns

• Black-box concerns
• Explainability is helping to address the concern
• What happens when it is drastically better than humans but for reasons we cannot 

fully understand?
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CUSTOMIZED 
AI SOLUTIONS
WHY CUSTOM, IN-HOUSE

SUPERVISED MACHINE LEARNING IS 

THE FUTURE OF AI IN HEALTH CARE

REDUCING BURDEN, 
AUGMENTING CLINICAL 
WORKFLOWS, AND 
IMPROVING OUTCOMES 
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BENEFITS OF AI

• AI often seen as a barrier between doctor 
and patient
• But can remove barriers and create time for 

more patient interaction

• Potential benefits
• Remove burden of repetitive tasks
• Augment patient workflows
• Improve outcomes through customized care

EMERGENCY ROOM: CLINICAL GUIDELINES

• Beth Israel Deaconess Medical Center
• David Sontag, Associate Professor of EE & 

Computer Science, Institute for Medical 
Engineering & Science

• When/with which patient should guidelines 
be applied?

• AI model to predict cardiac etiology
• NLP to mine patient notes
• Deep learning to identify most predictive factors
• Connected to EHR

• Results
• Instantly surfaces order sets relevant for patients 

with cardiac conditions
• Recommends appropriate clinical guidelines
• Human considers and applies

Image from David Sontag lecture, MIT course 
on AI in Health Care.
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MEDICAL DOCUMENTATION AT 
POINT OF CARE

• Chief complaints
• Can vary, which makes it harder to standardize
• Many “downstream” tasks rely on chief complaint

•Enrolling patients in clinical trials
•Conducting retrospective QI studies

• Take time to generate

• Increase standardization and save time?

• Redesigned workflow
• Nurses normally assign chief complaint first
• Instead, had nurse asks questions, write triage note

• AI processes note in real-time
• Suggests chief complaint

EMERGENCY 
ROOM: MEDICAL 
DOCUMENTATION 
AT POINT OF CARE

Option 2: begin typing in free text field 
and selected from list of auto-completes, 

presented in order of probability 

Option 1: click on one of five suggested 
chief complaints

Example

Writes triage note: 
• 78 y/o male c/o abdominal pain x3. 

c/o nausea and vomiting.

Enters vitals
• BP = 120/75, O2sat = 99%, temp = 

99.1, HR = 105, Respirator Rate = 16
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ER: MEDICAL DOCUMENTATION AT POINT OF CARE

• Option 2: Free text entry with contextual autocomplete
• Sorted by most probable chief complaint, according to the AI

Image from David Sontag lecture, MIT course on AI in Health Care.

ER: CHIEF COMPLAINT STANDARDIZATION

• 60,000 patients per year

• Initially, only 20-30% of free 

text chief complaints could be 

standardized

• After 4 years, was nearly 100%

Image from David Sontag lecture, MIT course on AI in Health Care.
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ER: CHIEF COMPLAINT TIME SAVINGS

• Initially took 11.6 keystrokes to enter chief complaint

• After AI use, took 0.6 keystrokes
• Sometimes chief complaint was in the top five listed, so no 

typing in the text field at all

AI VS “USUAL CARE” IN ER SETTINGS

• Systematic review

• 23 of 1,656 studies selected, representing 16,274,647 patients
• Diagnostic studies (n=7) showed AI outperformed usual care in all 

performance metrics
• In-hospital mortality studies (n=6) best-performing AI had better 

discrimination (.74-.94) than any other clinical decision tool (.68-.81)
• Hospitalization studies (n=4) showed AI had better discrimination (.80-.83) 

than triage-based scores (.69-.82)

Kareemi H, Vaillancourt C, Rosenberg H, Fournier K, Yadav K. Machine Learning Versus Usual Care for Diagnostic and 
Prognostic Prediction in the Emergency Department: A Systematic Review. Acad Emerg Med. 2021;28(2):184-196. 
doi:10.1111/acem.14190
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IMPROVING PATIENT 
CARE WITH AI AND 
IMAGING

BREAST CANCER AND AI

• Dr. Connie Lehman
• Director of Breast Imaging and Co-Director of the Avon 

Comprehensive Breast Evaluation Center, Massachusetts General

• Breast density
• Federal mandate to inform women with high density
• Higher risk of tumors, tumors are harder to detect

• Radiologists are inconsistent
• Classifications of high density ranged from 6% to 85% for same 

set of images
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BREAST CANCER AND AI

• Built AI to read mammograms and assign density rating

• Integrated into clinical workflow at Massachusetts General
• Better and more consistent performance than humans

• Radiologist had the final say to accept or reject AI reading
• Learned intermediary

• All rejections by radiologist sent to expert panel of radiologists

• Panel determinations were nearly always in agreement with AI

RISK STRATIFICATION: BREAST CANCER

• Images contain billions of data points
• Pixels per image
• Multiple images from different angles

• Most of that data is not used
• Condensed into 1-2 page summary
• Further condensed into a few categories

• Cancer grade, hormonal status

• 4 women with same categorization

• 3 were fine, 1 metastatic recurrence Image from lecture by Regina Barzilay, MIT Delta Electronics 
Professor of EE and Computer Science, course on AI in Health Care.
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RISK STRATIFICATION: BREAST CANCER

• Standard risk assessment is Tyrer-Cuzik
• AUC is .64 overall, .66 for one year, .65 for two year, and .63 for five year
• UNLESS you are Black or Asian, then it is .58 AND .53 at five years

• Deep learning AI 
• Considered all images and patient data/outcomes over time

• Data vector for each point in time
• Features for things like change since last result

• Annotated cases with treatments and outcomes over time

• AI better than humans
• AUC is .88 for one year, .79 for two year, and .79 for five year
• .72 for Black women and .76 for Asian women

INTRAOPERATIVE TUMOR CRYOSECTION EVALUATION

• Problem
• Surgery for brain cancer requires tumor classification 
• Tissue freezing makes identification hard (artifacts)
• Tumor classification includes molecular profiles

• Solution
• Cryosection Histopathology Assessment & Review Machine
• 1,524 glioma patients
• Validation at three different centers

• Results
• Identified malignant cells (AUC .98), IDH-mutant vs. wild 

(AUC .79-.82), three types of molecularly defined 
gliomas (AUC .88-.93), and most prevalent IDH-mutant 
tumors (AUC .89-.97).

Nasrallah MP, Zhao J, Tsai CC, et al. 
Machine learning for cryosection 
pathology predicts the 2021 WHO 
classification of glioma. Med. 
2023;4(8):526-540.e4. 
doi:10.1016/j.medj.2023.06.002
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AGE-RELATED MACULAR DEGNERATION

• Problem one
• AMD progression is atypical (less than 5 years) in 10-20% of patients
• Risk stratification/prediction is critical and requires significant clinical 

expertise
• Shortage of expertise and high variation on classifications

• Solution one: iPredict
• Deep learning model lets non-eye care specialists screen for AMD and 

predict risk
• Trained on 93,380 color fundus photos from 4,757 participants in AREDS 

10-year study
• 1,824 images from individuals who had accelerated progression; 2,840 

images from those who did not
• Validated on 23,495 images

AGE-RELATED MACULAR DEGNERATION

• Solution one: iPredict
• In less than 60 seconds, model classified patient as referable or not for 

AMD (AUC .99)
• Predicts risk of developing late AMD within 2 years (AUC .84–.86)

• Bhuiyan A, Wong TY, Ting DSW, Govindaiah A, Souied EH, Smith RT. Artificial Intelligence to 
Stratify Severity of Age-Related Macular Degeneration (AMD) and Predict Risk of Progression to 
Late AMD. Transl Vis Sci Technol. 2020;9(2):25. Published 2020 Apr 24. doi:10.1167/tvst.9.2.25

• Solution two: NIH system
• 3,298 participants, 80,000 images
• Outperformed the accuracy of retinal specialists using two clinical 

standards
• Peng Y, Keenan TD, Chen Q, et al. Predicting risk of late age-related macular degeneration using 

deep learning. NPJ Digit Med. 2020;3:111. Published 2020 Aug 27. doi:10.1038/s41746-020-
00317-z
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AI AND PATIENT SAFETY OUTCOMES

• Systematic Literature Review of AI and Patient Safety Outcomes
• Choudhury A, Asan O. Role of Artificial Intelligence in Patient Safety 

Outcomes: Systematic Literature Review. JMIR Med Inform. 
2020;8(7):e18599. Published 2020 Jul 24. doi:10.2196/18599

• 53 studies showed improvements
• Most from 85% to 95% AUC
• All with practical significance

Machine-learning (ML) models could distinguish clinically relevant pulse arterial O2 
saturation, blood pressure, and respiratory rate from artifacts in an online monitoring dataset 
(AUC>0.87)

Chen L, Dubrawski A, Wang D, Fiterau M, Guillame-Bert M, Bose E, et al. Using Supervised Machine
Learning to Classify Real Alerts and Artifact in Online Multisignal Vital Sign Monitoring Data. Crit 
Care Med 2016 Jul;44(7):e456-e463 doi: 10.1097/CCM.0000000000001660]

ML algorithm along with MMD was effective in suppressing false alarmsAnsari S, Belle A, Ghanbari H, Salamango M, Najarian K. Suppression of false arrhythmia alarms in
the ICU: a machine learning approach. Physiol Meas 2016 Aug;37(8):1186-1203. doi:
10.1088/0967-3334/37/8/1186

SVM reduced false alarm rates. The model gave an overall true positive rate of 95% and true 
negative rate of 85%

Zhang Q, Chen X, Fang Z, Zhan Q, Yang T, Xia S. Reducing false arrhythmia alarm rates using robust
heart rate estimation and cost-sensitive support vector machines. Physiol Meas 2017 Feb;38(2):259-
271. doi: 10.1088/1361-6579/38/2/259

A false alarm reduction score of 65.52 was achieved;
employing an alarm-specific strategy, the model performed at a true positive rate of 95% and
true negative rate of 78%. False alarms for extreme tachycardia were suppressed with 100% 
sensitivity and specificity

AntinkCH, LeonhardtS, WalterM. Reducing false alarms in the ICU by quantifyingself-similarity of
multimodalbiosignals. Physiol Meas 2016 Aug;37(8):1233-1252. doi: 10.1088/0967-
3334/37/8/1233

Out of 5 false alarms, 4 were suppressed; 77.39% real-time model accuracyEerikäinen LM, Vanschoren J, Rooijakkers MJ, Vullings R, Aarts RM. Reduction of false arrhythmia
alarms using signal selectionand machine learning.PhysiolMeas 2016 Aug 25;37(8):1204-1216.doi:
10.1088/0967-3334/37/8/1204

The ML method identified the sites by risk of underreporting and enabled real-time safety
reporting. The proposed model had an AUC of 0.62, 0.79, and 0.92 for simulation scenarios of 
25%, 50%, and 75%, respectively.
This project was part of a broader effort at Roche/Genentech to augment and complement
traditional clinical quality assurance approaches

Ménard T, Barmaz Y, Koneswarakantha B, Bowling R, Popko L. Enabling Data-Driven Clinical 
Quality Assurance: Predicting Adverse Event Reporting in Clinical Trials Using Machine Learning.
Drug Saf 2019 Sep 23;42(9):1045-1053 doi: 10.1007/s40264-019-00831-4

85% of the alerts were clinically valid, and 80% were considered clinically useful; 43% of the
alerts caused changes in subsequent medical orders. Thus, the model detected medication 
errors

Segal G, Segev A, Brom A, Lifshitz Y, Wasserstrum Y, Zimlichman E. Reducing drug prescription errors
and adverse drug events by application of a probabilistic, machine-learning based clinical decision 
support system in an inpatient setting. J Am Med Inform Assoc 2019 Dec 01;26(12):1560-1565. doi: 
10.1093/jamia/ocz135

NN-based model could detect health deterioration such as heart rate variability with more 
accuracy than one of the best-performingearly warning scores (ViEWS). The positive prediction
value of NN was 77.58% and the negative prediction value was 99.19%

Hu SB, Wong DJL, Correa A, Li N, Deng JC. Prediction of Clinical Deterioration in Hospitalized Adult
Patients with Hematologic Malignancies Using a Neural Network Model. PLoS One 
2016;11(8):e0161401 doi: 10.1371/journal.pone.0161401

The DEWS identified more than 50% of patients with in- hospital cardiac arrest 14 hours
before the event. It allowed medical staff to have enough time to intervene. The AUC and
AUPRC of DEWS was 0.85 and 0.04, respectively, and outperformed MEWS with AUC and 
AUPC of 0.60 and 0.003, respectively; RF with AUC and AUPC of 0.78 and 0.01, respectively; 
and LR with AUC and AUPRC of 0.61 and 0.007, respectively. DEWS reduced the number of
alarms by 82.2%, 13.5%, and 42.1% compared with the other models at the same sensitivity

Kwon J, Lee Y, Lee Y, Lee S, Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital
Cardiac Arrest. J Am Heart Assoc 2018 Jun 26;7(13):e008678 doi: 10.1161/JAHA.118.008678

The selected models performed poorly in classifying incident categories (48.77% best, using
J48), but performed comparatively better in classifying free text (76.49% using NB).

Gupta J, Patrick J. Automated validation of patient safety clinical incident classification: macro
analysis. Stud Health Technol Inform 2013;188:52-57.
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Binaryclassifier improved identification of common incident types: falls, medications,
pressure injury, aggression, documentation problem, and others. Automated identification 
enabled safety problems to be detected and addressed in a more timely manner

Wang Y, Coiera EW, Runciman W, Magrabi F. Automating the Identification of Patient Safety 
Incident Reports Using Multi-Label Classification. : IOS Press; 2017 Presented at: Precision
Healthcare Through Informatics: Proceedings of the 16th World Congress on Medical and Health 
Informatics; August 21-25, 2017; Hangzhou, China p. 609-613.

ML algorithms identified the medication event originating stages, event types, and causes, 
respectively. The models improved the efficiency of analyzing the medication event reports
and learning from the reports in a timely manner with (SVM) F1 of 0.792 and (RF) F1 of 0.925

Fong A, Harriott N, Walters DM, Foley H, Morrissey R, Ratwani RR. Integrating natural language
processing expertise with patient safety event review committees to improve the analysis of 
medication events. Int J Med Inform 2017 Aug;104:120-125. doi: 10.1016/j.ijmedinf.2017.05.005

Care-related complaints were influenced by money and emotionElMessiry A, Zhang Z, Cooper W, Catron T, Karrass J, Singh M, editors. Leveraging sentiment
analysis for classifying patient complaints. 2017 Presented at: Proceedings of the 8th ACM 
International Conference on Bioinformatics, Computational Biology,Health Informatics; 2017; 
Boston. doi: 10.1145/3107411.3107421

Each clinical study document contained about 6.8 abbreviations. Each abbreviation can have
1.25 meanings on average. This helped in identification of acronyms

Chondrogiannis E, Andronikou V, Varvarigou T, Karanastasis E, editors. Semantically-Enabled Context-
Aware Abbreviations Expansion in the Clinical Domain. 2017 Presented at: Proceedings of the 9th 
International Conference on Bioinformatics Biomedical Technology; 2017; Washington DC. doi: 
10.1145/3093293.3093304

Binary relevance was the best problem transformation algorithm in the multilabeled classifiers.
It provided suggestions on how to implement automated classification of patient safety 
reports in clinical settings

Liang C, Gong Y. Automated Classification of Multi-Labeled Patient Safety Reports: A Shift from
Quantity to Quality Measure. Stud Health Technol Inform 2017;245:1070-1074.

SVM performed well on datasets with diverse incident types (85.8%) and data with patient 
misidentification (96.4%). About 90% of false positives were found in “near-misses” and 
70% of false negative occurred due to spelling errors

Ong M, Magrabi F, Coiera E. Automated identification of extreme-risk events in clinical incident
reports. J Am Med Inform Assoc 2012 Jun;19(e1):e110-e118 doi: 10.1136/amiajnl-2011-000562

Rule-based NLP was better than the ML approach. NLP detected bleeding complicationswith
84.6% specificity, 62.7% positive predictive value, and 97.1% negative predictive value. It
can thus be used for quality improvement and prevention programs

Taggart M, Chapman WW, Steinberg BA, Ruckel S, Pregenzer-Wenzler A, Du Y, et al. Comparison of
2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients. 
JAMA Netw Open 2018 Oct 05;1(6):e183451 doi: 10.1001/jamanetworkopen.2018.3451

Electronic health platform providesan intuitive conversational user interface that patients use to
connect to their therapist and self-anamnesis app. The app also allows data sharing among 
treating therapists

Denecke K, Lutz HS, Pöpel A, May R, editors. Talking to ana: A mobile self-anamnesis application
with conversational user interface. 2018 Presented at: Proceedings of the 2018 International
Conference on Digital Health; 2018; Lyon. doi: 10.1145/3194658.3194670

The SVM classifier improved the identification of patient safety incidents. Incident reports 
containing deaths were most easily classified with an accuracy of 72.82%. The severity 
classifier was not accurate to replace manual scrutiny

Evans HP, AnastasiouA, Edwards A, Hibbert P, Makeham M, Luz S, et al. Automated classification
of primary care patient safety incident report content and severity using supervised machine
learning (ML) approaches. Health Informatics J 2019 Mar 07:1460458219833102. doi: 
10.1177/1460458219833102

CNN achieved high F scores (>85%) across all test datasets when identifying common incident 
types, including falls, medications, pressure injury, and aggression. It improved the process by 
11.9% to 45.10% across different datasets

Wang Y, Coiera E, Magrabi F. Using convolutional neural networks to identify patient safety
incident reports by type and severity. J Am Med Inform Assoc 2019 Dec 01;26(12):1600-1608. 
doi: 10.1093/jamia/ocz146

The adverse event risk score at the 0.1 level could identify 57.2% of adverse events with
26.3% accuracy from 9.2% of the validation sample. The adverse event risk score of 0.04 
could identify 85.5% of adverse events

Li M, Ladner D, Miller S, Classen D. Identifying hospital patient safety problems in real-time with
electronic medical record data using an ensemble machine learning model. Int J Clin Med Inform 
2018;1(1):43-58.

NLP identified 82% of acute renal failure cases compared with 38% for patient safety
indicators. Similar results were obtained for venous thromboembolism (59% vs 46%), 
pneumonia (64% vs 5%), sepsis (89% vs 34%), and postoperative myocardial infarction (91%
vs 89%)

Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, et al. Automated identification 
of postoperative complications within an electronic medical record using natural language
processing. JAMA 2011 Aug 24;306(8):848-855. doi: 10.1001/jama.2011.1204

For severity level, the F score for severity assessment code (SAC) 1 (extreme risk) was 87.3 
and 64% for SAC4 (low risk) on balanced data. With stratified data, a high recall was 
achieved for SAC1 (82.8%-84%), but precision was poor (6.8%-11.2%).
High-risk incidents (SAC2) and medium-risk incidents (SAC3) were often misclassified. Reports
about falls, medications, pressure injury, aggression, and blood tests were identified with high
recall and precision

Wang Y, Coiera E, Runciman W, Magrabi F. Using multiclass classification to automate the
identification of patient safety incident reports by type and severity. BMC Med Inform Decis Mak 
2017 Jun 12;17(1):84 doi: 10.1186/s12911-017-0483-8

In contrast to the univariate analysis, the best performing multivariate delta check model (SVM) 
identified errors with a high degree of accuracy (0.97)

Rosenbaum M, Baron J. Using Machine Learning-Based Multianalyte Delta Checks to Detect Wrong
Blood in Tube Errors. Am J Clin Pathol 2018 Oct 24;150(6):555-566. doi: 10.1093/ajcp/aqy085

The semisupervised model categorized patient safety reports into their appropriate patient
safety topic and avoided over- laps; 85% of unlabeled reports were assigned correct labels. It 
helped NCPS analysts to develop policy and mitigation decisions

McKnight SD. Semi-supervised classification of patient safety event reports. J Patient Saf 2012
Jun;8(2):60-64. doi: 10.1097/PTS.0b013e31824ab987

The NB kernel performed best, with an AUC of 0.927, accu- racy of 0.855, and F score of 
0.877. The overall proportion of cases found relevant was compara- ble between manually and
automatically screened cases; 334 reports identified by the model as relevant were identified 
as not relevant, implying a false-positive rate of 13%. Manual screening identified 4 incorrect
predictions, implying a false-negative rate of 29%

Marella WM, Sparnon E, Finley E. Screening Electronic Health Record-Related Patient Safety Reports
Using Machine Learning. J Patient Saf 2017 Mar;13(1):31-36. doi: 
10.1097/PTS.0000000000000104

The modified early warning system accurately predicted the possibility of death for the top
13.3% (34/255) of patients at least 40.8 hours before death

Ye C, Wang O, Liu M, Zheng L, Xia M, Hao S, et al. A Real-Time Early WarningSystem for Monitoring
InpatientMortality Risk: Prospective Study Using Electronic Medical Record Data. J Med Internet Res
2019 Jul 05;21(7):e13719 doi: 10.2196/13719

Unigrammodels performedbetter than Bigram and combined models. It identified HIT-related
events trained on PSE free-text descriptions from multiple states and health care systems. The
unigram LR model gave an AUC of 0.931 and an F1 score of 0.765. LR also showed potential
to maintain a faster runtime when more reports are analyzed. The final HIT model had less
complexity and was more easily sharable

Fong A, Adams KT, Gaunt MJ, Howe JL, Kellogg KM, Ratwani RM. Identifying health information
technology related safety event reports from patient safety event report databases. J Biomed
Inform 2018 Oct;86:135-142 doi: 10.1016/j.jbi.2018.09.007

27 out of 74 (36.5%) PANDIT advice differed from those provided by diabetes nurses. 
However, only one of these (1.4%) was considered unsafe by the panel

Simon ACR, Holleman F, Gude WT, Hoekstra JBL, Peute LW, Jaspers MWM, et al. Safety and usability
evaluation of a web-based insulin self-titration system for patients with type 2 diabetes mellitus.
Artif Intell Med 2013 Sep;59(1):23-31. doi: 10.1016/j.artmed.2013.04.009

The 10‐fold crossvalidation improved the identification of drug-drug interaction with
AUC>0.97, which is significantly greater than the analogously developed ML model (0.67)

Song D, Chen Y, Min Q, Sun Q, Ye K, Zhou C, et al. Similarity-based machine learning support
vector machine predictor of drug-drug interactions with improved accuracies. J Clin Pharm Ther 2019 
Apr 18;44(2):268-275. doi: 10.1111/jcpt.12786
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CART exhibited high predictive accuracy of 78.94% for allergic reactions, 88.69% for renal,
and 90.22% for the liver. CHAID model showed a high accuracy of 89.74% for the central 
nervous system

Hammann F, Gutmann H, Vogt N, Helma C, Drewe J. Prediction of adverse drug reactions using
decision tree modeling. Clin Pharmacol Ther 2010 Jul 10;88(1):52-59. doi: 10.1038/clpt.2009.248

The proposed model (own model) outperformed traditional LR, SVM, DT, and predicted 
adverse drug reactions with an AUC of 0.92

Bean DM, Wu H, Iqbal E, Dzahini O, Ibrahim ZM, Broadbent M, et al. Knowledge graph prediction
of unknown adverse drug reactions and validation in electronic health records. Sci Rep 2017 Nov 
27;7(1):16416. doi: 10.1038/s41598-017-16674-x

In the non drug-drug interaction group, the AUC of RF, MLP, CART, and C4.5 was 0.91, 0.81,
0.79, and 0.784, respectively; for the drug-drug interaction group, the AUC of RF, CART, MLP,
and C4.5 was 0.89, 0.79, 0.77, and 0.77,
respectively. DT-based approaches and MLP can determine the initial dosage of a high-alert
digoxinmedication,which can increase drug safety in clinical practice

Hu Y, Tai C, Tsai C, Huang M. Improvement of AdequateDigoxinDosage: An Application of Machine
LearningApproach. J Healthc Eng 2018;2018:3948245. doi: 10.1155/2018/3948245

A total of 33 trial sets were evaluated by the algorithm and reviewed by pharmacovigilance
experts. After every 6 trial sets, drug and adverse event dictionaries were updated, and rules 
were modified to improve the system. The model identified adverse events with 92% precision 
and recall

Tang Y, Yang J, Ang PS, Dorajoo SR, Foo B, Soh S, et al. Detecting adverse drug reactions in 
discharge summaries of electronic medical records using Readpeer. Int J Med Inform 2019
Aug;128:62-70. doi: 10.1016/j.ijmedinf.2019.04.017

The proposed model improved warfarin dosage when com- pared to the baseline (mean 
absolute error 0.394); reduced mean absolute error by 40.04%

Hu Y, Wu F, Lo C, Tai C. Predicting warfarin dosage from clinical data: a supervised learning
approach. Artif Intell Med 2012 Sep;56(1):27-34. doi: 10.1016/j.artmed.2012.04.001

Collaborative filtering identified the top 10 missing drugs about 40% to 50% of the time and
the therapeutic missing drugs about 50% to 65% of the time

Hasan S, Duncan GT, Neill DB, Padman R. Automatic detection of omissions in medication lists. J
Am Med Inform Assoc 2011 Jul 01;18(4):449-458 doi: 10.1136/amiajnl-2011-000106

Mean (SD) cumulative adherence based on the AI platform was 90.5% (7.5%). Plasma drug
concentration levels indicated that adherence was 100% (15/15) and 50% (6/12) in the 
intervention and control groups, respectively

Labovitz DL, Shafner L, Reyes Gil M, Virmani D, Hanina A. Using Artificial Intelligence to Reduce
the Risk of Nonadherence in Patients on Anticoagulation Therapy. Stroke 2017 May;48(5):1416-
1419 doi: 10.1161/STROKEAHA.116.016281

All patients completed the task. The software improved reconciliation; all patients identified at
least one error in their electronic medical record medication list; 8 of 10 patients reported that 
they would use the device in the future. The entire team (clinical and patients) liked the device
and preferred to use it in the future

Long J, Yuan MJ, Poonawala R. An Observational Study to Evaluate the Usability and Intent to 
Adopt an Artificial Intelligence-Powered Medication Reconciliation Tool. Interact J Med Res 2016
May 16;5(2):e14 doi: 10.2196/ijmr.5462

ABC4D was safe for use as an insulin bolus dosing system. A trend suggesting a reduction in
postprandial hypoglycemia was observed.
The median (IQR) number of postprandial hypoglycemia episodes within 6 h after the meal
was 4.5 (2.0-8.2) in week 1 versus 2.0 (0.5-6.5) in week 6 (P=.10). No episodes of severe 
hypoglycemia occurred during the study

Reddy M, Pesl P, Xenou M, Toumazou C, Johnston D, Georgiou P, et al. Clinical Safety and
Feasibility of the Advanced Bolus Calculator for Type 1 Diabetes Based on Case-Based Reasoning: A
6-Week Nonrandomized Single-Arm Pilot Study. Diabetes Technol Ther 2016 Aug;18(8):487-493. 
doi: 10.1089/dia.2015.0413

75% of the chart-reviewed alerts generated by MedAware were valid from which medication 
errors were identified. Of these valid alerts, 75.0% were clinically useful in flagging potential 
medication errors.

Schiff GD, Volk LA, Volodarskaya M, Williams DH, Walsh L, Myers SG, et al. Screening for
medication errors using an outlier detection system. J Am Med Inform Assoc 2017 Mar 
01;24(2):281-287. doi: 10.1093/jamia/ocw171

The hybrid algorithm yielded precision (P) of 95.0%, recall
(R) of 91.6%, and F value of 93.3% on medication entity identification, and P=98.7%,
R=99.4%, and F=99.1% on attribute linkage. The combination of the hybrid system and 
medication matching system gave P=92.4%, R=90.7%, and F=91.5%, and P=71.5%, R=
65.2%, and F=68.2% on classifying the matched and the discrepant medications, 
respectively

Li Q, Spooner SA, Kaiser M, Lingren N, Robbins J, Lingren T, et al. An end-to-end hybrid algorithm
for automated medication discrepancy detection. BMC Med Inform Decis Mak 2015 May 06;15:37 
doi: 10.1186/s12911-015-0160-8

The NLP-assisted manual review identified an additional 728 (3.1%) patients with evidence
of clinically diagnosed problem opioid use in clinical notes.

Carrell DS, Cronkite D, Palmer RE, Saunders K, Gross DE, Masters ET, et al. Using natural language
processing to identify problem usage of prescriptionopioids. Int J Med Inform 2015
Dec;84(12):1057-1064. doi: 10.1016/j.ijmedinf.2015.09.002

CSS detected more hospital-associated infections than man- ual chart review (92% vs 34%);
CSS missed events that were not stored in a coded format

Tinoco A, Evans RS, Staes CJ, Lloyd JF, Rothschild JM, Haug PJ. Comparison of computerized
surveillance and manual chart review for adverse events. J Am Med Inform Assoc 
2011;18(4):491-497 doi: 10.1136/amiajnl-2011-000187

The Gaussian SVM model yielded 78% prediction accuracy for the drug dataset, including all 
diseases. The ensemble of bagged tree and linear SVM models in- volved 89% of the
accuracies for psycholeptics and psycho- analytic drugs

Onay A, Onay M, Abul O. Classification of nervous system withdrawn and approved drugs with 
ToxPrint features via machine learning strategies. Comput Methods Programs Biomed 2017
Apr;142:9-19. doi: 10.1016/j.cmpb.2017.02.004

CARD demonstrated higher accuracy in identifying known drug interactions compared to the
traditional method (20% vs 10%);
CARD yielded a lower number of drug combinations that are unknown to interact (50% for
CARD vs 79% for association rule mining).

Cai R, Liu M, Hu Y, Melton BL, Matheny ME, Xu H, et al. Identification of adverse drug-drug
interactions through causal association rule discovery from spontaneous adverse event reports. 
Artif Intell Med 2017 Feb;76:7-15 doi: 10.1016/j.artmed.2017.01.004

Joint modeling improved the identification of adverse drug events from 0.62 to 0.65Dandala B, Joopudi V, Devarakonda M. Adverse Drug Events Detection in Clinical Notes by Jointly
Modeling Entities and Relations Using Neural Networks. Drug Saf 2019 Jan;42(1):135-146. doi:
10.1007/s40264-018-0764-x

Neural fingerprints from the deep learning model (AUC=0.72) outperformed all other
methods in predicting adverse drug reactions.
The model identified important molecular substructures that are associated with specific 
adverse drug reactions

Dey S, Luo H, Fokoue A, Hu J, Zhang P. Predicting adverse drug reactions through interpretable deep
learning framework. BMC Bioinformatics 2018 Dec 28;19(Suppl 21):476 doi: 10.1186/s12859-
018-2544-0

MADEx achieved the top-three best performances (F1 score of 0.8233) for clinical name entity 
recognition, adverse drug effect, and relations from clinical texts, which outperformed 
traditional methods

Yang X, Bian J, Gong Y, Hogan WR, Wu Y. MADEx: A System for Detecting Medications, Adverse 
Drug Events, and Their Relations from Clinical Notes. Drug Saf 2019 Jan;42(1):123-133 doi: 
10.1007/s40264-018-0761-0

The micro-averaged F1 score was 80.9% for named entity recognition, 88.1% for relation
extraction, and 61.2% for the integrated systems

Chapman AB, Peterson KS, Alba PR, DuVall SL, Patterson OV. Detecting Adverse Drug Events with 
Rapidly Trained Classification Models. Drug Saf 2019 Jan 16;42(1):147-156 doi: 10.1007/s40264-
018-0763-y

Experimental results showed the usefulness of the proposed pattern discovery method by
improving the standard baseline adverse drug reaction by 23.83%

Lian D, Khoshneshin M, Street WN, Liu M. Adverse drug effect detection. IEEE J Biomed Health
Inform 2013 Mar;17(2):305-311. doi: 10.1109/TITB.2012.2227272

The proposed computational framework showed that an in silico model built on this framework
can achieve satisfactory cardiotoxicity adverse drug reaction prediction performance (median 
AUC=0.771, accuracy=0.675, sensitivity=0.632, and specificity=0.789).

Huang L, Wu X, Chen JY. Predicting adverse side effects of drugs. BMC Genomics 2011 Dec 23;12
Suppl 5:S11 doi: 10.1186/1471-2164-12-S5-S11
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HOSPITAL 
OPTIMIZATION TO 
IMPROVE CAPACITY 
AND OUTCOMES

HOSPITAL OPTIMIZATION

• Dimitris Bertsimas, Professor of Operations Research, MIT
• Operating room optimization

• Half of beds in hospital come from ER admissions, half from elective surgeries
• Optimize operating rooms to maximize capacity for ER patients

• Predict length of stay in hospital (discharge prediction)
• Predict number of patients admitted via ER

• Beth Israel Deaconess Medical Center

• Use deep learning to look at all three and optimize patient flow

Bertsimas D and Pauphilet J. Forthcoming. “Holistic Hospital Optimization.” Management Science.
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OR SCHEDULING

• Peak bed usage on Wed./Thur.
• Surgeon X 

• 2 complex cases on Monday
• 4-day length of stay 
• Contributes 2 patients to M–R census 

• N Ambulatory cases on Thursday
• Same day discharge

• Switch schedule
• Complex cases on Thursday

• Stays R–M

• Ambulatory on Monday (no stays)
• Contributes no patients M–W

Images from Bertsimas lecture, MIT course on AI in 
Health Care. Data from Hartford Hospital.

OR SCHEDULING

• Surgeons tend to operate in patterns/blocks
• Optimizing by assigning surgeons to different days

• Constraints used for their AI
• Not all surgeons and surgeries can move
• Number of surgeries cannot exceed previous year
• Limited number of changes to schedule
• No OR blocks on weekends
• OR limited to 7 hours per day

Image from Bertsimas lecture, MIT course on AI in Health Care. Data from Hartford Hospital.

45

46



5/21/2024

24

OR SCHEDULING

• Implementation
• AI generates multiple solutions in seconds
• Solutions are approved/selected

• Results
• Changed 11 out of 250 surgeons
• Freed up 21 beds per week

• Most benefit comes from the first few 

iterations

Image from Bertsimas lecture, MIT course on AI in Health Care. Data from Hartford Hospital.

PREDICTING SHORT-TERM DISCHARGE

• Beth Israel Deaconess Medical Center

• Used patient admits over 2.5 years
• Excluded psych, OBGYN, newborns
• 60,000 admissions, 40,000 patients

• NLP and Deep Learning
• NLP: Used patient notes day after admittance (curated, annotated)
• Deep Learning: Multiple feature vectors, including movement, walking, restricted to 

bed dietary, fall risk, comorbidities, vital signs, labs, medication, insurance, secure 
homesite, language, etc.

• Asked four questions
• Discharged in 24 or 48 hours?
• ICU in next 24 hours?
• Exceed 7 or 14 day stay?
• Was discharge location home, hospice, rehab, or death?
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PREDICTING SHORT-TERM DISCHARGE

• AUC for discharge within 24 hours was between 81% and 84%

• ICU prediction was 97%

• Used to schedule staffing and resources

Image from Bertsimas lecture, MIT course on AI in Health Care. Data from Hartford Hospital.

THE INVISIBLES
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EMERALD DEVICE

• Like Wi-Fi router

• Measures disturbances in 

electromagnetic waves throughout 

the home

• AI models interpret the patterns

• Breathing and heart rate

• As accurate as in-office 

measurement

• With more validity (in-situ)

Image and descriptions by Dina Katabi,
Andrew and Erna Viterbi Professor of EE and 
Computer Science, MIT
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SLEEP

• Sleep studies are nonrepresentative
• Unfamiliar place, bed, one night of 

sleep, wearing electrodes

• Emerald can measure sleep as well 
as the gold standard, but in situ
• Awake
• Light sleep
• Deep sleep
• REM
• Sleep apnea

MOBILITY

• Mobility and 

associated 

patterns of health
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WHY THE FUTURE 
OF AI IS NOT QUITE
BRIGHT ENOUGH 
FOR SHADES
(WITH APOLOGIES TO TIMBUK3, 

AND THOSE TOO YOUNG TO 

KNOW WHO THEY WERE)

EXPENSIVE AND TIME-CONSUMING

• Annotation is expensive
• Time of experts to classify cases and identify and label features

• Curation takes time and is easy to get wrong
• Who makes up your population?
• Different imaging machines, preprocessing data (typos, IDC-9 vs IDC-

10)

• AI needs to be connected to the EHR to be most 
effective
• Requires significant expertise
• If you don’t have expertise, have to hire outside help 
• AND must deidentify EHR data in ADDITION

• Complex problems require complex AI
• Will need outside help in most cases
• Interpretability will be challenging
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UNDERSTANDING AND TRUST

• AI as a “Black Box” 

• Power of AI: do things humans cannot do
• Or do them faster
• Often makes it less understandable

• Working to build interpretable AI 
• List the features to which it is ”paying attention”

• Challenges of interpretability
• Interpretable for doctor ≠ interpretable for patient
• Interpretable at what level of detail?

• Biological prediction of drug target?
• Full biological mechanism of processing by body?

BUILDING INTERPRETABLE AI

• Test the model against humans
• Build AI models that first explain, then provide outcome
• Have panel of experts work through each case

• Adversarial training
• Change cases in ways that should change the outcome and 

seeing how the AI output changes

• Ask AI to explain, have human make the final call
• Learned intermediary
• FDA often requires human as the final “decider”
• Good model for AI
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HOW AI CAN GO WRONG EVEN WHEN DOING OUR 
BEST
• Risk stratification and hospital optimization

• Predict sickest patients and align resources and care

• Optum AI developed for use by hospitals
• Data vectors included IDC codes
• More codes = more treatment = sicker patient

• Results
• White people tended to be classified as higher risk
• Black people tended to be classified as lower risk

• Why?
• IDC codes confounded with insurance levels and cost
• Better insurance = more treatment ≠ sicker people!

• Explainability
• If AI said what it was ”paying attention” to…

Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. 
Science. 2019;366(6464):447-453. doi:10.1126/science.aax2342

IMPORTANCE OF CHALLENGING AND REFINING MODELS

• Regina Barzilay (MIT) and Connie Lehman (Massachusetts General)

• During development of radiography AI for cancer risk stratification

• Selected images from patients with poor or good outcomes

• AI hit 99.9% AUC for images of patients with and without cancer
• Selected all cancer cases from one year and all non-cancer from the next year
• Mass Gen had switched imaging machines between those years
• Each machine has unique stamps

• AI found the best, most predictive pattern in could
• Machine type, not cancer
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WHEN SUPERVISION CEASES: MENTAL HEALTH

• Tessa (shared via National Eating Disorders Association)

• Initially a closed system using SML (NLP)

• Later bought by company that connected to generative AI (unsupervised)

• Started giving incorrect advice under repetitive questioning

GENERALIZABILITY IN AI

• When you’ve seen one deep learning model….
• You’ve seen one deep learning model

• Predicting patient outcomes of medication for schizophrenia
• Deep learning performed very well for members of the training data set
• No better than chance when applied to other datasets

• Chekroud AM, Hawrilenko M, Hieronimus Loho, et al. Illusory generalizability of clinical prediction 
models. Science. 2024;383(6679):164-167. DOI: 10.1126/science.adg8538
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THE (NEAR) FUTURE OF AI

• AI factories
• Automates data collection, preprocessing, labeling, augmentation
• Continually integrates and adjusts to incoming (new) data
• Preliminary model development
• Selects and “tunes” algorithms to refine and select best models
• Deploys testing frameworks to test models against validation datasets
• Monitors model performance, alerts to model drift and anomalies

• Will exponentially accelerate deep learning development and 

remove expertise and resource barriers

• Must be used by humans as productivity tool for SML, not as  

automomous stand-alone

CLOSING THOUGHTS

• Future of AI in health care is already here

• Today’s AI is the worst you will ever use

• In some cases, already better than humans

• Not “Yes or No,” but when, how, for whom and for what problems?
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